FAIR REQUIREMENTS FOR PERSISTENCE AND INTEROPERABILITY 2019

Jessica Parland-von Essen
Leah Riungu-Kalliosaari
Work Packages in FAIRsFAIR

Practice and policy

Training and education

Certification
Content of the report

- FAIR technologies and methods
 - Semantic interoperability
 - Semantic artefacts
 - PID and PID services
- FAIR in the context of the data life cycle
 - Repositories
 - Evolving datasets and data citation
- ESFRI RI’s

https://doi.org/10.5281/zenodo.3557381
D2.1 REPORT ON FAIR REQUIREMENTS FOR PERSISTENCE AND INTEROPERABILITY

https://doi.org/10.5281/zenodo.3557381
Roles of the respondents

- Research support staff 28
- Repository staff 19
- Research infrastructure operator 17
- Researcher 22
- Policy maker 5
- Other 5

<table>
<thead>
<tr>
<th>Number of researchers in organization</th>
<th>Number of responses (N=64)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>16</td>
</tr>
<tr>
<td>100 - 500</td>
<td>13</td>
</tr>
<tr>
<td>500 - 1000</td>
<td>7</td>
</tr>
<tr>
<td>1000 <</td>
<td>28</td>
</tr>
</tbody>
</table>

Survey data https://doi.org/10.5281/zenodo.3518922
Mentioned infrastructures

ACTRIS	EMBRC ERIC	INSTRUCT ERIC (2)
	ADC	IODE
AnaEE (2)	EMODnet	IS-ENES (2)
BBMRI ERIC	EMPHASIS (2)	LifeWatch ERIC
CESSDA ERIC (5)	EPOS	ODP
CLARIN (4)	ESS ERIC	OpenAIRE
DARIAH (3)	EU-SOLARIS	PRACE (3)
DiSSCo (3)	EURO-ARGO ERIC (2)	SCADM
EISCAT_3D	European XFEL	SeaDataNet/SeaDataCloud (2)
ELIXIR (3)	FAIR (3)	SHARE ERIC
eLTER (2)	Go FAIR Initiative	SKA
	IAGOS (2)	SOOS

Survey data: https://doi.org/10.5281/zenodo.3518922
RDF

SKOS
Data Cube Vocabulary
R2RML
RDFS
OWL
ICV
SPIN/SPARQL
ShEx
SHACL
The triple

subject → Predicate → object
Semantic Interoperability

Interoperability is the ability of computer systems to transmit data with unambiguous, shared meaning. Semantic interoperability is a requirement to enable machine computable logic, inferencing, knowledge discovery, and data federation between information systems. Semantic interoperability is achieved when the information transferred has, in its communicated form, all of the meaning required for the receiving system to interpret it correctly, even when the algorithms used by the receiving system are unknown to the sending system. Syntactic interoperability is a prerequisite to semantic interoperability.

CASRAI. https://dictionary.casrai.org/Semantic_interoperability

Trans-language interoperability
Semantic Artefacts

A rough illustration of the semantic gradient

- Controlled vocabularies
- Thesauri
- Glossaries

Stronger semantics
- Ontologies
- Taxonomies
- Data models

Weaker semantics

Modified from McCreary D (2006)
Patterns of Semantic Integration. CC 2.5
Semantic artefacts adoption

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage in field</td>
<td>widely approved and adopted</td>
</tr>
<tr>
<td></td>
<td>used within community, acknowledged mandate</td>
</tr>
<tr>
<td>Coverage of content</td>
<td>sufficient amount of the terminology</td>
</tr>
<tr>
<td></td>
<td>coverage, completeness, coherence</td>
</tr>
<tr>
<td></td>
<td>structure corresponds to the ontology of the domain</td>
</tr>
<tr>
<td></td>
<td>certification, quality, community approval</td>
</tr>
<tr>
<td>Governance</td>
<td>usable and fit for purpose</td>
</tr>
<tr>
<td></td>
<td>compatibility, format, granularity, workflow</td>
</tr>
<tr>
<td></td>
<td>actively maintained by a trusted, authoritative party</td>
</tr>
<tr>
<td></td>
<td>curation, versioning, persistence</td>
</tr>
<tr>
<td></td>
<td>(re)usability</td>
</tr>
<tr>
<td></td>
<td>open access, documented</td>
</tr>
</tbody>
</table>
FAIR Semantics

- Task in FAIRsFAIR for developing recommendations for semantic artefacts
- Semantic artefacts are often complex datasets
- Can be treated as such, but also needs further recommendations to ensure reusability
Examples of services for semantic artefacts

- FAIRsharing
- BARTOC
- BioPortal
- AgroPortal
- GEMET
- Linked Open Vocabularies (LOV)
Persistent identifiers
Recommendations by the RDA Data Fabric

- A persistent identifier (PID) needs to be supported by a sustainable and trustworthy resolution system that will resolve PIDs to meaningful state information for machines and humans which are metadata attributes describing essential properties of a Digital Object (DO).

- A trustworthy PID resolution system needs to fulfil quality criteria still to be defined and needs to undergo regular quality assessment.

- The persistent PID record should be used to persistently bind the context of digital objects.

- A PID should be assigned to a Digital Object when it is registered at a trustworthy repository and thus becomes part of the domain of visible and findable data.

- A DOI should be registered when Digital Objects (data) are being published and citation metadata should be associated with it.
PIIDs not only for datasets, but also for

- how the various dimensions represented as variables in datasets of the form w1, d2, temp, etc., correspond to real world notions of weight, distance, temperature, etc.
- what are the measurement units associated with each of those dimensions, e.g., Kelvin, Celsius, or Fahrenheit in the case of temperature.
- how those dimensions are grouped or packed together in datasets.
- Data Type Registry. [web page] RDA. Available from: http://typeregistry.org/registrar/
DataCite

- Cite a specific slice or subset
 - the set of updates to the dataset made during a particular period of time or to a particular area of the dataset

- Cite a specific snapshot
 - a copy of the entire dataset made at a specific time

- Cite the continuously updated dataset, but add Access Date and Time to the citation
 - Does not necessarily ensure reproducibility

- Cite a query, time-stamped for re-execution against a versioned database
RDA Evolving data citation

• Data Versioning: For retrieving earlier states of datasets the data needs to be versioned. Markers shall indicate inserts, updates and deletes of data in the database.

• Data Timestamping: Ensure that operations on data are timestamped, i.e. any additions, deletions are marked with a timestamp.

• Data Identification: The data used shall be identified via a PID pointing to a time-stamped query, resolving to a landing page.
Conclusions (1)

FAIRness on a more generic level is not ready and clearly defined.

The landscape is diverse in all aspects. Differences inside domains are often bigger than differences between domains.

Semantic artefacts are a key element in building interoperability and good quality (meta)data.
Conclusions (2)

Crosswalks, mappings and semantic application profiles should be published and registered in machine readable formats.

PID and data type registries should promote reuse rather than bulk creation of PIDs. To support interoperability, they should be considered semantic artefacts and used mindfully.
Conclusions (3)

Reuse of semantic artefacts should be promoted by publishing application profiles. Curated registries like the EOSC Hub, FAIRsharing and re3data.org are important resources.

Data citation and machine actionable solutions should be developed in parallel. Community adoption and trust are the decisive factors.
Conclusions (4)

The most popular, potentially most useful, and most complex approaches on improving FAIRness of data are based on technologies using Linked Data.

The development should be research rather than technology driven.

Solutions should be user friendly, context sensitive and transparent to the users.
Next steps

A lot of relevant work is and will be done within EOSC-related projects including our own WP. This will be included in the second report, with your help!

Please, give feedback on the report!

https://fairsfair.eu/fairsfair-deliverables-community-review

D2.1 Report on FAIR requirements for persistence and interoperability 2019

https://doi.org/10.5281/zenodo.3557381

Heikki Lehväslaiho, Heidi Laine, Claudia Behnke, Christine Staiger, Yann LeFranc