

# Clearing some of the highest FAIR hurdles: PIDs, Metadata, and Semantic Interoperability for Data Stewards and Service Providers





#### Program

Introduction: The FAIRsFAIR project - Jessica Parland-von Essen

• Implementing persistent identifiers - Jessica Parland-von Essen

Semantic interoperability and Metadata - Rob Hooft

Q&A







## FAIRsFAIR in a nutshell

Call: H2020-INFRAEOSC-5c

Budget: 10 million euro

Length: 36 months

Starting date: March 1 2019

22 partners from 8 MS 6 core partners















# FAIRsFAIR partners

Data Archiving and Networked Services





















Universidade do Minho



























## Our objective

Help survey the landscape of FAIR activities in relation to EOSC and identify where dialogue and collaboration can be encouraged.

Create a basis for harmonisation efforts to bring together the various actors working in the FAIR ecosystem and build a functioning EOSC and active community around EOSC.



#### DATA PRACTICES

- Reports
- FAIR requirements for persistence and interoperability
- Guidelines for ontology design and vocabulary interoperability
- Basic framework for services enabling FAIR (including software)
- Solutions for interoperability and machine accessibility for FAIR-aligned repositories
- Prototype for interoperability of repositories
- Workshops and hackathons: Recommendations for FAIR Semantics and Semantics in FAIR



#### **DATA POLICY**

- Reports
- Recommendations on data policy and analysis of practice
- Integration of meta-data catalogues
- White paper on alignment and synchronisation around FAIR, Open Science and EOSC
- Support programme for repositories to reach FAIR compliance



#### CERTIFICATION

- European network of trustworthy repositories enabling FAIR data
- Support and guidance for certification of data repositories
- Tool to identify relevant trustworthy certified repositories
- Pilots to support the assessment of FAIR data in trustworthy repositories



## MAIN OUTPUTS

March 2019 - February 2022

#### TRAINING, EDUCATION AND SUPPORT

- Reports
  - FAIR data in European higher education
  - ♦ Training for researchers in FAIR data science and its impact
- FAIR competence centres tailored to different communities
  - Three annual schools in core data skills for researchers
- Five instructor training (train-the-trainer) events
- FAIR competence framework for higher education
- Three annual FAIR data education stakeholder workshops
- FAIR competences adoption handbook for universities
  - Three workshops on integrating FAIR data competences
  - Case studies on good practices in FAIR competences education







#### WP2 FAIR Practices: Semantics, Interoperability and Services

- → November 2019: D2.1 Report on FAIR requirements for persistence and interoperability 2019 (<a href="https://doi.org/10.5281/zenodo.3557381">https://doi.org/10.5281/zenodo.3557381</a>)
- → **February 2020**: Assessment report on FAIRness of services (<a href="https://doi.org/10.5281/zenodo.3688762">https://doi.org/10.5281/zenodo.3688762</a>)
- → March 2020: FAIR Semantics: First recommendations (<u>https://doi.org/10.5281/zenodo.3707985</u>)
- → August 2020: 2nd Report on FAIR requirements for persistence and interoperability (<a href="https://doi.org/10.5281/zenodo.4001631">https://doi.org/10.5281/zenodo.4001631</a>)
- → October 2020: M2.15 Assessment report on 'FAIRness of software' (<a href="https://doi.org/10.5281/zenodo.4095092">https://doi.org/10.5281/zenodo.4095092</a>)

Contact: Jessica Parland-von Essen jessica.parland-vonessen@csc.fi



# T2.1: Review of the technical implementation of FAIR principles

- The 1st Report was mainly a landscaping exercise which reviewed and documented the state of FAIR in the European scientific data ecosystem.
- The report identified commonalities and possible gaps in semantic interoperability and the use of metadata and persistent identifiers across infrastructures.
- The **2nd Report on FAIR requirements for persistence and interoperability** builds on the first report.
- It's been written specifically for researchers, data stewards, and service providers, and is a guide to the use of PIDs, metadata, and semantic interoperability.



#### What part of FAIR is hard?

- Both FAIRsFAIR and the EOSC see that implementation of FAIR can be hard
- Some things are community-specific
- Some things are generic
  - o PIDs
  - (semantic) interoperability
  - metadata









#### Persistent identifiers

- Globally unique, i.e. nobody else in the world should use the same string to refer to anything else
  - a controlled syntax and a governed namespace
  - be issued and managed by a clearly specified registration authority
- Resolvable, i.e. provide a way for both machines and humans to access the digital object itself, the state information and/or a landing page
- Persistent, i.e. remain unique and resolvable with a persistent syntax. The object it represents should also be persistent and protected against content drift
  - this requires metadata and curation





## Structure of PIDs and example responsibilities





## THE PROMISE

THE COST



### Resolving

- Domain Name Service (DNS) resolver: Resolves a hostname to an IP address.
- Local resolver, e.g. load balancer, API gateway or web server: Redirects to a different host and/or path.
- **Full resolver**, e.g. handle system: Redirects to a URL either following a regular expression pattern, or a specific URL stored in the service.
- Meta-resolver, e.g. identifiers.org or n2t.net: Redirects to a URL following a regular expression pattern.
- **Single-service resolver**: some PIDs resolve to a single central resource, e.g. ORCID.

Source: Wimalaratne S, Fenner M D2.1 PID Resolution Services Best Practices. FREYA, 2018. https://doi.org/10.5281/zenodo.1324300



#### PID records and metadata

- The PID itself as a string contains information
  - the PID should be recognisable as a PID to the user (human and/or machine)
  - all other semantics poses a risk and should be carefully managed
- The PID contains kernel metadata that should be as minimal as possible
  - The PID record may be a non-authoritative source for arbitrary metadata and stored directly at the resolving service
- The master metadata is provided by the PID owner and manager



#### Research information



#### Research data





#### Shallow FAIR and Deep FAIR

Research Information





Research Data



Necessary research information, PIDs, machine readable license



All data elements are machine accessible



## **Providing PIDs**

designated community

interoperability across domains

Ontology

Life cycle

Use cases



#### **Evolving datasets and citation**

- Data Versioning: For retrieving earlier states of datasets, the data needs to be versioned. Markers shall indicate inserts, updates and deletes of data in the database.
- Data Timestamping: Ensure that operations on data are timestamped, i.e. any additions, deletions are marked with a timestamp.
- Data Identification: The data used shall be identified via a PID pointing to a time-stamped query, resolving to a landing page.

Rauber A, Asmi A, van Uytvanck D, Proell S. Data Citation of Evolving Data: Recommendations of the Working Group on Data Citation (WGDC). Published online October 20, 2015. <a href="https://doi.org/doi:10.15497/RDA00016">https://doi.org/doi:10.15497/RDA00016</a>





- Define objects to identify
- Identify relevant practices, standards and regulations
- Map external information systems and services
- Analyse the current state and the target state of your organisation





2. Comparing alternatives

- Assess the different PID systems and services for each object type
- Compare costs
- Plan for the life cycle
- Assess the trustworthiness of the solutions

3.
Deployment
and
maintenance

- Create policies, guidelines and documentation
- Implement and offer training

https://doi.org/10.5281/zenodo.4395767



#### Service providers can support FAIR PIDs by

- providing and implementing a clear PID policy
- actively promoting and taking part in PID governance
- assigning and managing PIDs to master data and sharing these
- integrating external PIDs in their information architecture
- integrating external PIDs in the workflow of (meta)data creation
- automating the processes of metadata generation and linking as much as possible in user friendly, yet transparent ways



a PID is a promise







FAIRSFAIR "Fostering FAIR Data Practices in Europe" has received funding from the European Union's Horizon 2020 project call H2020-INFRAEOSC-2018-2020 Grant agreement 831558





Four layers in the New European Interoperability Framework

医克尔德氏 医医克尔德氏 医医克尔德氏征

https://ec.europa.eu/isa2/eif\_en



# Semantic Interoperability: Do I understand what you mean?

 If you don't know it, worth watching <u>https://www.youtube.com/watch?v=66oNv\_DJuPc</u>





#### Semantic Interoperability: File Format?

Does using "standard file formats" solve the interoperability problem?

- No!
- File format is "technical interoperability"
- PDF is standard, but no help for data reuse
- CSV doesn't save the day
- SPSS doesn't guarantee that data is understandable

So, what do we need in addition?



## Semantic Interoperability: Contents!

All content needs to be unambiguous





https://www.peterkrantz.com/2010/semantic-interoperability/



#### Semantic Interoperability: Contents!

- All terms need to be unambiguous
- All numbers need to be unambiguous





https://www.slideshare.net/maximelefrancois86/reference-knowledge-models-for-smart-application

医克尔斯氏氏征 医克尔斯氏氏征 医克尔斯氏反应



### Semantic Interoperability: Contents!

- All terms need to be unambiguous
- All numbers need to be unambiguous
- What does it mean when data is missing/empty/"zero"/"-1"

It should be impossible to misunderstand



### Misunderstanding?

• It should be impossible for a user of the data to misunderstand it

#### Who is that user?

- You, right now?
- You, in 5 years?
- A coworker?
- Someone from a similar lab elsewhere?
- Someone performing wide-scale data integration?





https://www.slideshare.net/maximelefrancois86/reference-knowledge-models-for-smart-application

医克尔斯氏氏征 医克尔斯氏氏征 医克尔斯氏反应



# Semantic interoperability: How?

- FAIR principles paper does not make a choice
- "Linked Data" is a very good technical implementation
  - Describe relationships and properties
  - Instead of terms, use "URIs" (or.... PIDs)
  - Very generic, many tools have been developed to work with it



# Relationships and properties



30



# "Semantic Web" stack





# Data Structure

Unstructured data?



# RDF?

Please do not convert all data to RDF! But make sure it is unambiguously possible.



## Rich semantics also codes relations



The EOSC Interoperability Framework

https://www.eoscsecretariat.eu/sites/default/files/eosc-interoperability-framework-v1.0.pdf



# Semantic interoperability for machines

- Rather than using a term to describe something that is specific to a human language and may be context-dependent in practice, refer to concepts represented by a unique identifier
- Each data value should be associated with a precise data type, documented to such precision that misunderstandings are avoided
- Semantic artefacts are tools used for this
- Sharing and curating these to be FAIR and trustworthy is the basis for sustainable semantic interoperability
- Follow the recommendations for FAIR semantics (FAIRsFAIR D2.5)



# Service providers can support FAIR Interoperability by

- providing and implementing a clear data management policy
- actively promoting and taking part in developing common semantic artefacts and tools
- creating, curating and linking FAIR semantic artefacts and sharing these when possessing authoritative resources
- integrating external semantic artefacts in the information architecture
- integrating semantic artefacts in the workflow of (meta)data creation
- automating the processes of metadata generation using shared and controlled vocabularies







# "Don't give me books for Christmas, I already have a book"

--- Jean Harlow



#### Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier;
- F2. data are described with rich metadata;
- F3. metadata clearly and explicitly include the identifier of the data it describes;
- F4. (meta)data are registered or indexed in a searchable resource;

## Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- 12. (meta)data use vocabularies that follow FAIR principles;
- I3. (meta)data include qualified references to other (meta)data;

#### Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol;
- A1.1 the protocol is open, free, and universally implementable;
- A1.2. the protocol allows for an authentication and authorization procedure, where necessary;
- A2. metadata are accessible, even when the data are no longer available;

#### Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes;
- R1.1. (meta)data are released with a clear and accessible data usage license;
- R1.2. (meta)data are associated with detailed provenance;
- R1.3. (meta)data meet domain-relevant community standards;



## **DMP**

"Which metadata standard(s) will you use"

### With options:

- I will use Dublin Core
- I will use discipline specific standards

But: It should always be both!



#### Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier;
- F2. data are described with rich metadata;
- F3. metadata clearly and explicitly include the identifier of the data it describes;
- F4. (meta)data are registered or indexed in a searchable resource;

## Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles;
  - I3. (meta)data include qualified references to other (meta)data;

#### Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol;
- A1.1 the protocol is open, free, and universally implementable;
- A1.2. the protocol allows for an authentication and authorization procedure, where necessary;
- A2. metadata are accessible, even when the data are no longer available;

#### Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes;
  - R1.1. (meta)data are released with a clear and accessible data usage license;
  - R1.2. (meta)data are associated with detailed provenance;
  - R1.3. (meta)data meet domain-relevant community standards;



## What is in a metadata standard?

- Optional: Format
- Fields
  - Definition
  - Priority: Obligatory, Recommended, Optional
  - Ontology / Vocabulary



## How to find a metadata standard

- FAIRsharing
  - http://fairsharing.org
- RDA metadata directory
  - http://rd-alliance.github.io/metadata-directory/
- CEDAR:
  - http://metadatacenter.org
- Component MetaData Infrastructure, CDMI
  - https://www.clarin.eu/content/component-metadata



# Service providers can support metadata by

- providing and implementing a clear metadata policy
- actively promoting and taking part in developing common semantic artefacts and tools
- creating, curating and linking FAIR semantic artefacts and sharing these when possessing authoritative resources
- integrating semantic artefacts in the workflow of (meta)data creation
- automating the processes of metadata generation using shared and controlled vocabularies







# **FAIRsFAIR**



www.fairsfair.eu



@FAIRsFAIR eu



www.linkedin.com/company/fairsfair/



www.youtube.com/channel/UCE4wSBnNIBfu6SqlBalMfNg

